The Building Science of Air

TREVOR TRAINOR, MASC BUILDING SCIENCE RESEARCHER RDH BUILDING SCIENCE LTD.

Introduction: About RDH

- → Building Enclosure Engineering Firm with over 150 staff across 6 offices on west coast of Canada & US - Projects North America Wide
- → We are Engineers, Architects, Technologists, Project Managers, Contractors, Researchers
- → We are all about Making Buildings Better
 - → New Construction
 - → Existing Buildings
 - → Forensics
 - → Energy Efficiency & Policy
 - → Practical Research, Education & Guidelines

Air and the Built Environment

- \rightarrow Obviously.....air is everywhere
 - \rightarrow And is critical to our existence
- → But
 - → Air can move energy, moisture, pollutants
 - > All of which we want to control in our homes
- → If we don't control it, our buildings will be unhealthy, inefficient, uncomfortable and will decay prematurely

RD -

→ What's the difference between an air barrier and a vapour barrier?

- \rightarrow Can a building be too air tight?
- → Should a building be able to 'breathe'?
- → Why does interior RH matter?
- \rightarrow How does ventilation reduce RH?

The Building Enclosure

Fundamentals: Air-leakage and Pressure RDH

- → For Air-Leakage to occur, need a pressure difference across the building enclosure or within an enclosure
- → Amount of air-leakage depends on the pressure (the load) and air-tightness of the enclosure (size of holes)

No pressure, no flow

No hole, no flow

It takes BOTH pressure and a hole for there to be flow.

 \rightarrow Air Leakage

 \rightarrow Wind washing

→ Convective Loops

Air Barriers vs Vapour Barriers

- \rightarrow Air Barrier
 - → Stops air flow

- > may or may not allow water vapour to pass through
- → Needs to have no holes
- → More is better
- → Vapour Barrier (Retarder)-
 - → Slows water vapour flow
 - > may or may not allow air to pass through
 - → Does not need to completely stop water vapour
 - \rightarrow Holes are OK
 - \rightarrow No more than 1

RD -

Controlling Air Flow – The Air Barrier System

- → Needed in all building types and climate zones
- → Can be a system of many materials & components
- → Primary design and construction considerations are: details, ease of installation and material compatibility are
- → Can by placed anywhere within the enclosure*

- 1. **Prevent condensation** within the building enclosure
- 2. **Control heat loss** through the enclosure
- 3. Maintain indoor air-quality within the building

1) Air Leakage Condensation

• Air leakage can deposit 10 to 100 times more condensation than vapour flow can

Controlling air leakage is much more difficult and more important than controlling vapour flow

The amount of water vapour transported by Air-leakage is more than an order of magnitude than that typically moved by vapour diffusion

Air Leakage Condensation: Field Testing

Air Leakage Condensation: Forensic Investigations

2) Air Leakage and Energy

RDH

(Huange et al., 1999)

gaps in the air barrier

7/16" ROOF AND WALL SHEATHIN

Avantas de case lo ser lo se l

0 10 -0 0

o o o o o

.

ZIZsystem

ZII-system'

7/16" ROOF AND WALL SHEATHING

но вкотовно витися на маке и разволяти на маке и н На маке и на м

Laters

seal the gaps in the air barrier

24

2400

2 That

7/16 ROOF AND VALL SHEATHING

000

3) Air Tightness and Interior Air Quality

Requirements for Air Barrier Systems

#1: Air Impermeability

#2: Continuity

#3: Durability

Requirements for an Air Barrier

#1: Air Impermeability

- → Materials must be resistant to flow of air at pressures experienced in the building
- → Is a referenced building code requirement
- → Most materials & systems easily meet requirements

Requirements for Air Barrier Systems

#2: Continuity

- \rightarrow Air pressure finds flaws
- → The joints and transitions of the materials are key!!!!!
- → Consider the air barrier system
- \rightarrow Redundancy is good

Requirements for Air Barrier Systems

#3: Durability

- → durable enough to last as long as the enclosure assembly
- → Must be able to take stresses due to assembly, material movement, wind pressures etc.
- → Must not degrade due to high or low temperatures, moisture, chemicals, contaminants, UV

RDH

Untried air barrier membrane product from Europe – failed due to heat aging effects in roof assembly

Traditionally - Interior poly acts as air barrier

- → Difficult to make continuous
 - Transition at floor rim joist
 - Transition at ceiling plane
 - Penetrations at electrical outlets, plumbing and HVAC penetrations

Exterior Air Barrier

More effective exterior to the structure

Easier to make it continuous

- Utilize strength and stiffness of sheathing
- > Transition across rim joist area
- Avoid many electrical, plumbing and HVAC penetrations
- > Potential transition issues at ceiling level
- > Potential for cold side vapour barrier
 - Exterior Insulation can be a solution

RD H

- → Air barrier materials should be selected carefully to not negatively affect durability
- → Watch vapor permeance of air barrier materials on "cold" side of insulation

Moisture Content of North Walls

Measuring Air Tightness

→ Blower Door Testing

\rightarrow How tight should it be?

Airtightness [L/(s.m²) @ 75 Pa]

RDH

Construction of Building [year]

Interior Relative Humidity

\rightarrow What is RH?

→ Moisture in building materials

> Construction moisture

> Rain Leaks/Condensation

> Flooding

Dew point temperature

 \rightarrow Surface temperature at which condensation occurs

RDH

 \rightarrow Is directly related to air temperature and RH

Typical (?) Interior RH Conditions

Kash data from: Justin Breg, UW

Surface Condensation

Controlling Interior Relative Humidity

- → Mechanical Ventilation
 - > Controlled exchange of interior air with exterior air

→This thing again?

Ventilation

- \rightarrow Natural Ventilation
 - → Windows, stack vents
 - → Unreliable and inconsistent
- → Mechanical Ventilation
 - \rightarrow Trading energy for IAQ and humidity control

RD H

- → Trading complexity for effectiveness
- \rightarrow Supply only
- \rightarrow Exhaust only
- \rightarrow Balanced HRV

Heat Recovery Ventilator

Ventilation Rates

- → Air-tightness is critical for creating comfortable, durable, efficient and healthy homes.....especially in cold, wet and windy environments
 - → An air tightness standard should be specified for all new construction and also considered in all renovations
 - → Compliance through blower door testing
- → Ventilation is critical for controlling relative humidity and indoor air quality
 - → A practical ventilation standard should be developed and specified for all new construction and extended to existing buildings

→What's the difference between an air barrier and a vapour barrier?

- 1) Air barrier is more important
- 2) Air barrier must be nearly flawless
- 3) Air barrier can go anywhere in the assembly

RD H

\rightarrow Can a building be too air tight?

- → NO
- \rightarrow The tighter the better
- → Controlling air flow is key to:
 - > Indoor air quality
 - > Building durability
 - > Energy efficiency

→Should a building be able to 'breathe'?

- → NO not through the building enclosure
- → Mechanical system should be used to control the amount and quality of air
- → BUT the enclosure should be able to dry in one direction

RD H

→Why does interior RH matter?

- \rightarrow The RH effects the dew point
- → The dew point effects if condensation occurs
- → The dew point effects how much condensation occurs

→How does ventilation reduce interior RH?

- → Expels warm moist air
- → Brings in cold air and when it warms up, produces dry air

Questions?????

\rightarrow Thanks for your time!